28 research outputs found

    Accurate estimation of sigma(exp 0) using AIRSAR data

    Get PDF
    During recent years signature analysis, classification, and modeling of Synthetic Aperture Radar (SAR) data as well as estimation of geophysical parameters from SAR data have received a great deal of interest. An important requirement for the quantitative use of SAR data is the accurate estimation of the backscattering coefficient sigma(exp 0). In terrain with relief variations radar signals are distorted due to the projection of the scene topography into the slant range-Doppler plane. The effect of these variations is to change the physical size of the scattering area, leading to errors in the radar backscatter values and incidence angle. For this reason the local incidence angle, derived from sensor position and Digital Elevation Model (DEM) data must always be considered. Especially in the airborne case, the antenna gain pattern can be an additional source of radiometric error, because the radar look angle is not known precisely as a result of the the aircraft motions and the local surface topography. Consequently, radiometric distortions due to the antenna gain pattern must also be corrected for each resolution cell, by taking into account aircraft displacements (position and attitude) and position of the backscatter element, defined by the DEM data. In this paper, a method to derive an accurate estimation of the backscattering coefficient using NASA/JPL AIRSAR data is presented. The results are evaluated in terms of geometric accuracy, radiometric variations of sigma(exp 0), and precision of the estimated forest biomass

    Monitoring rice agropractices in North Africa: a comparison of MODIS and Sentinel-1 results

    Get PDF
    Agro-monitoring systems need up-to-date information on where, when and how much a crop is cultivated, in particular in developing countries and for food security reasons. Such information can be derived from remote sensing imagery with fast revisiting cycles. In the past, only time series of optical moderate resolution data such as HVRR, SPOT-Vegetation and MODIS provided the necessary high temporal resolution for this kind of applications. These datasets have been successfully used for agro-monitoring activities and to perform retrospective and trend analysis. Due to their moderate to coarse spatial resolution (~ 250 – 1000 m) their applications are limited however to regional to continental scales. In this context, the advent of the Sentinel sensors opens new opportunities, since they provide time series of satellite imagery with decametric spatial resolution and revisit times of 5 days. Studies that fully exploit Sentinel imagery for crop monitoring are therefore needed to assess their potential contribution for i) performing high resolution crop-monitoring activities and, ii) extending time series of information derived from archive coarse resolution imagery with the aim of performing analyses of temporal trends over a reasonably long time span. This contribution presents a comparison of MODIS or Sentinel1 time series for detection (cultivated area and number of seasons) and seasonal dynamics’ analysis (sowing, harvesting and flowering dates) for irrigated rice cultivation in the Senegal River Valley (SRV)for the 2016 dry and wet rice seasons. MODIS time series analysis exploited the PhenoRice algorithm (Boschetti et al., 2017), a rule-based algorithm specifically designed for rice detection and seasonal dynamics monitoring and based on the use of time series of TERRA and AQUA 250 m resolution 16-day Composite Vegetation Indexes (MODIS products MOD13Q1 and MYD13Q1). The SAR data analysis was instead based on analysis of Sentinel-1A time series acquired over the study area from January to December 2016. In particular, the RICEscape software was used for analysing the SAR backscatter (0) temporal profiles both in the VV and in the VH polarization, to define a set of rules allowing to properly identify rice cultivated areas. The algorithm mostly exploits SAR data, although cloud free Landsat-8 Optical images were used to crosscheck and complement the information derived from SAR. This approach was applied to generate rice crop area and Start of Season (SOS) maps for both the dry (sowing in February – April) and the wet (sowing in September – November) rice seasons. Results showed a strong consistency between the thematic maps derived from the two data sources. We observed that, although the rice-classified area is rather different due to the large difference in spatial resolution, the main spatial patterns of estimated sowing dates and crop intensity are quite similar. A comparison between the average values of MODIS and SAR estimated dates after aggregation on a 2x2 km regular grid shows a strong correlation between the sowing dates derived from Sentinel-1 and MODIS data, for both the dry and the wet season of 2016. The comparability of MODIS and Sentinel results is encouraging for the development of innovative services for characterization and monitoring of crop systems. Such systems could in fact exploit both the sufficiently long MODIS time series to characterize the main characteristics of crop systems and their recent evolution, as well as the innovative Sentinel-1 time series for monitoring of present-day and future conditions

    Exploitation of SAR and optical Sentinel data to detect rice crop and estimate seasonal dynamics of leaf area index

    Get PDF
    This paper presents and evaluates multitemporal LAI estimates derived from Sentinel-2A data on rice cultivated area identified using time series of Sentinel-1A images over the main European rice districts for the 2016 crop season. This study combines the information conveyed by Sentinel-1A and Sentinel-2A into a high-resolution LAI retrieval chain. Rice crop was detected using an operational multi-temporal rule-based algorithm, and LAI estimates were obtained by inverting the PROSAIL radiative transfer model with Gaussian process regression. Direct validation was performed with in situ LAI measurements acquired in coordinated field campaigns in three countries (Italy, Spain and Greece). Results showed high consistency between estimates and ground measurements, revealing high correlations (R^2>0.93) and good accuracies (RMSE<0.83, rRMSE_m<23.6% and rRMSE_r<16.6%) in all cases. Sentinel-2A estimates were compared with Landsat-8 showing high spatial consistency between estimates over the three areas. The possibility to exploit seasonally-updated crop mask exploiting Sentinel-1A data and the temporal consistency between Sentinel-2A and Landsat-7/8 LAI time series demonstrates the feasibility of deriving operationally high spatial-temporal decametric multi-sensor LAI time series useful for crop monitoring

    A high-resolution, integrated system for rice yield forecasting at district level

    Get PDF
    To meet the growing demands from public and private stakeholders for early yield estimates, a high-resolution (2 km × 2 km) rice yield forecasting system based on the integration of the WARM model and remote sensing (RS) technologies was developed. RS was used to identify rice-cropped area and to derive spatially distributed sowing dates, and for the dynamic assimilation of RS-derived leaf area index (LAI) data within the crop model. The system—tested for the main European rice production districts in Italy, Greece, and Spain—performed satisfactorily; >66% of the inter-annual yield variability was explained in six out of eight combinations of ecotype × district, with a maximum of 89% of the variability explained for the ‘Tropical Japonica’ cultivars in the Vercelli district (Italy). In seven out of eight cases, the assimilation of RS-derived LAI improved the forecasting capability, with minor differences due to the assimilation technology used (updating or recalibration). In particular, RS data reduced uncertainty by capturing factors that were not properly reproduced by the simulation model (given the uncertainty due to large-area simulations). The system, which is an extension of the one used for rice within the EC-JRC-MARS forecasting system, was used pre-operationally in 2015 and 2016 to provide early yield estimates to private companies and institutional stakeholders within the EU-FP7 ERMES project

    Delineation of groundwater potential zones by means of ensemble tree supervised classification methods in the Eastern Lake Chad basin

    Get PDF
    This paper presents a machine learning method to map groundwater potential in crystalline domains. First, a spatially-distributed set of explanatory variables for groundwater occurrence is compiled into a geographic information system. Twenty machine learning classifiers are subsequently trained on a sample of 488 boreholes and excavated wells for a region of eastern Chad. This process includes collinearity, cross-validation, feature elimination and parameter fitting routines. Random forest and extra trees classifiers outperformed other algorithms (test score > 0.80, balanced score > 0.80, AUC > 0.87). Fracture density, slope, SAR coherence (interferometric correlation), topographic wetness index, basement depth, distance to channels and slope aspect proved the most relevant explanatory variables. Three major conclusions stem from this work: (1) using a large number of supervised classification algorithms is advisable in groundwater potential studies; (2) the choice of performance metrics constrains the relevance of explanatory variables; and (3) seasonal variations from satellite images contribute to successful groundwater potential mapping

    Downstream Services for Rice Crop Monitoring in Europe: From Regional to Local Scale

    Get PDF
    The ERMES agromonitoring system for rice cultivations integrates EO data at different resolutions, crop models, and user-provided in situ data in a unified system, which drives two operational downstream services for rice monitoring. The first is aimed at providing information concerning the behavior of the current season at regional/rice district scale, while the second is dedicated to provide farmers with field-scale data useful to support more efficient and environmentally friendly crop practices. In this contribution, we describe the main characteristics of the system, in terms of overall architecture, technological solutions adopted, characteristics of the developed products, and functionalities provided to end users. Peculiarities of the system reside in its ability to cope with the needs of different stakeholders within a common platform, and in a tight integration between EO data processing and information retrieval, crop modeling, in situ data collection, and information dissemination. The ERMES system has been operationally tested in three European rice-producing countries (Italy, Spain, and Greece) during growing seasons 2015 and 2016, providing a great amount of near-real-time information concerning rice crops. Highlights of significant results are provided, with particular focus on real-world applications of ERMES products and services. Although developed with focus on European rice cultivations, solutions implemented in the ERMES system can be, and are already being, adapted to other crops and/or areas of the world, thus making it a valuable testing bed for the development of advanced, integrated agricultural monitoring systems

    First results on road network extraction and fusion on optical and SAR images using a multi-scale adaptive approach

    No full text
    In this article, we introduce a unitary approach to road extraction in wide area images, obtained by means of satellite sensors in both the optical/infrared and microwave domains. Despite the large amount of methodologies discussed in technical literature for road extraction, they have been mostly tested on relatively small portions of satellite images. Moreover, in many cases, the method targeted an optical or a synthetic aperture radar (SAR) image, and a unitary strategy is missing. This study is aimed at bridging these gaps and provides a unique framework for the extraction of roads with different characteristics using optical or SAR data sets. The approach exploits a multi-scale analysis to adapt to the different resolutions of data and a pre-processing step to adapt to the different wavelengths of data. When possible, the framework allows the fusion of the road networks extracted from optical and SAR data of the same area. The soundness of the approach is proved by means of the analysis of Landsat and ALOS data of an area in Congo
    corecore